黑料社区网

Skip to main content

Methane leaks are a major factor in climate change. One startup wants to stop them

Methane leaks are a major factor in climate change. One startup wants to stop them

Title image: A technician inspects a high-tech laser at a natural gas facility in Colorado. (Credit: Casey Cass/黑料社区网)

Sean Coburn walks down a dusty dirt road in Greeley, Colorado, flanked by a scene that鈥檚 becoming more common in this city at the edge of the Front Range鈥攔ows and rows of tanks, pipes, stacks and other hallmarks of the oil and gas industry.

The engineer, who earned his doctorate from 黑料社区网 and now splits time between the university and a company called , is wearing a flame retardant jacket, bulky boots and a hard hat. He needs them on this site. Here, operators take raw and very flammable oil and natural gas, the latter mostly composed of methane, and process it into a form that people can use to heat their homes or drive their cars.

[video:https://www.youtube.com/watch?v=Kh9JyuzynBU]

But Coburn is heading for something else: a metal tower, about 50-feet-tall with what looks like a security camera on top.

鈥淲e pipe the laser light up from there,鈥 said Coburn, pointing at a cabinet at the base of the tower. 鈥淭hen we shoot it at different targets around the site.鈥

As he talks, the cabinet beeps, and the laser emitter at its end begins to turn, sweeping over the landscape.

The tower is part of an ambitious undertaking from scientists at LongPath and 黑料社区网. They鈥檙e using new laser technology to do what other technologies have struggled to do for years: detect natural gas, which is invisible to the eye, leaking from pipes at sites like this, in real time.

Methane is a powerful greenhouse gas, said Greg Rieker, an associate professor of mechanical engineering听at 黑料社区网. He testified before the U.S. House of Representatives听Committee on Science, Space and Technology听June 8 . He noted that methane听can trap nearly 80 times more heat in the atmosphere than carbon dioxide, and research suggests that escaped methane from oil and gas operations may play a much bigger role in climate change than previously thought.

LongPath is trying to plug that source. The company鈥檚 towers shoot lasers over miles of terrain to sniff out even the faintest whiffs of methane in the air. So far, the company has installed 23 of them covering almost 300,000 acres in Texas, New Mexico, Oklahoma听and Colorado. Rieker believes听the technology could be a win-win for the West: Slowing down emissions of this dangerous gas, while also reducing costs for an industry that employs tens of thousands.

The story of this technology, called a dual frequency comb laser spectrometer, dates back to the 1990s when a听 first developed frequency comb lasers to explore the working of atoms鈥攁nd earned a Nobel Prize in the process.

鈥淣ow, we鈥檙e able to use those same ideas and, with just one of these systems, mitigate about 80 million cubic feet of methane emissions per year,鈥 said Rieker who co-founded LongPath in 2017.

A truck labeled "LongPath Technologies" parks near a tower

A LongPath Technologies van visits a natural gas facility in Greeley. (Credit: Casey Cass/黑料社区网)

Thinking small

More information

Learn about quantum research at 黑料社区网:

CUbit Quantum Initiative

Quantum Engineering Initiative

Scott Diddams was part of those early days of frequency comb lasers. He was a postdoctoral researcher working with Hall at between 黑料社区网 and the National Institute of Standards and Technology (NIST), to probe quantum physics鈥攐r the mysterious workings of very, very small things.

The researchers weren鈥檛 thinking about methane hovering over oil fields at the time. Instead, they used their lasers to measure how fast atoms tick. To make an atomic clock, Diddams explained, physicists first shine laser light at a cloud of atoms, giving them a kick so that they flip between different energy levels at a staccato pace. Hall鈥檚 group invented frequency combs to help count out that rhythm.

鈥淎toms tick nearly a quadrillion times per second,鈥 said Diddams, now a professor in the Department of Electrical, Computer and Energy Engineering. 鈥淵ou need a really special tool to count those cycles.鈥

Frequency combs were special. Normal lasers, like the pointers in any lecture hall, can only generate one type of light: say, red light or green light. But these new lasers could produce thousands or even millions of colors of infrared light at the same time鈥攁n entire rainbow inside a single beam.

Hall and German scientist Theodor H盲nsch took home a Nobel in 2005 鈥渇or their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique."

By the time Rieker joined 黑料社区网 in 2013, he and Diddams were already wondering what else frequency combs could do.

Quantum comb

Greg Reiker and Scott Diddam in the lab

Greg Rieker (left) works with a colleague in his听lab at 黑料社区网. (Credit: Casey Cass/黑料社区网)

methane detection

Comb-like spikes on a computer听screen illustrate measurements of methane, water and carbon dioxide. (Credit: Casey Cass/黑料社区网)

A tower in a natural gas facility

A laser emitter sits at the top of a tower at a natural gas facility in Colorado. (Credit: Casey Cass/黑料社区网)

At LongPath鈥檚 offices in Boulder, Coburn and his colleagues open a computer window showing the data coming in from the system in Greeley. The graph shows a squiggly readout with sharp spikes like the teeth in a comb.

Each tooth corresponds to a color in the team鈥檚 frequency comb laser (hence, the name). Rieker explained that if you shine one of these devices into a cloud of gas, the molecules inside will absorb some of those colors but not all of them. In other words, molecules will leave an imprint on the laser light, almost like pressing your thumb to a glass.

鈥淓ach of these different molecules absorbs a different pattern of light,鈥 Rieker said. 鈥淢ethane has o