Dukovic /rasei/ en New ‘Molecular Dam’ Stops Energy Leaks in Nanocrystals /rasei/2025/10/21/new-molecular-dam-stops-energy-leaks-nanocrystals <span>New ‘Molecular Dam’ Stops Energy Leaks in Nanocrystals </span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-10-21T13:17:19-06:00" title="Tuesday, October 21, 2025 - 13:17">Tue, 10/21/2025 - 13:17</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-10/2025_09_ChargeSeparationThumbnail.jpg?h=4362216e&amp;itok=vDukBiSr" width="1200" height="800" alt="Illustration showing the charge separation event"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> <a href="/rasei/taxonomy/term/170"> Publication Highlight </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/281" hreflang="en">Catalysis</a> <a href="/rasei/taxonomy/term/160" hreflang="en">Dukovic</a> <a href="/rasei/taxonomy/term/315" hreflang="en">EPN</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/385" hreflang="en">RoundupPhotocatalysis</a> </div> <a href="/rasei/our-community">Daniel Morton</a> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p class="lead"><em>A molecular engineering breakthrough could make key light-driven reactions over 40 times more efficient.&nbsp;</em></p><p>A collaborative team of scientists from the , the University of California Irvine, and Fort Lewis College, led by RASEI Fellow Gordana Dukovic, has found a way to slow energy leaks that have impeded the use of tiny nanocrystals in light-driven chemical and energy applications. <a href="https://doi.org/10.1016/j.chempr.2025.102760" rel="nofollow">As described in a new article published in the journal Chem</a>, the team has used a molecule that strongly binds to the nanocrystal’s surface, essentially acting like a ‘dam’ to hold back the energy stored in the charge-separated state formed after light absorption. This technique extends the lifetime of the charge separation to the longest recorded for these materials, providing a pathway to improved efficiencies and more opportunities to put this energy to work in chemical reactions. This collaboration is part of the U.S. Department of Energy funded <a href="https://science.osti.gov/bes/efrc" rel="nofollow">Energy Frontier Research Center</a>: <a href="https://photosynthesis.uci.edu/" rel="nofollow">Ensembles of Photosynthetic Nanoreactors (EPN).</a>&nbsp;</p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><h3><strong>Harnessing Light to Power Chemistry</strong></h3><p>Many of the products we rely on today, from plastics, to fertilizers, and pharmaceuticals, are created, or synthesized, through industrial chemical reactions that can often require immense heat and pressure, typically generated by burning fossil fuels. For decades there has been research exploring a less harsh and theoretically more efficient alternative: Photocatalysis. The goal is to use a compound, a “photocatalyst”, that can harness the energy in light and use it to power chemical reactions at room temperature. Semiconductor nanocrystals, particles that are over a thousand times smaller than the width of a human hair, are a leading candidate for this job. When exposed to light these nanocrystals generate a short-lived spark of energy, in the form of a separated negative charge (an electron) and a positive charge (called a “hole”, due to the absence of an electron). A key challenge in this area is that this spark disappears quickly, because the electron and the hole recombine, and the energy is lost before it can be put to good use.&nbsp;</p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default 3"> <div class="ucb-article-row-subrow row"> <div class="ucb-article-text col-lg d-flex align-items-center" itemprop="articleBody"> <div><h3><strong>Building a Molecular Dam</strong></h3><p><span>To solve this problem the team focused on building what we might call a ‘molecular dam’, something that helps prevent, or at least slow down, the electron and the hole from recombining. This research started with cadmium sulfide (CdS) nanocrystals and designed a molecule (in this case a phenothiazine derivative) with two key features; first the incorporation of a chemical group that acts as a ‘sticky anchor’ (in this case a carboxylate group), which binds strongly to the nanocrystal surface, and second, a molecular structure that quickly accepts the positive charge (the hole), from the nanocrystal to realize the light-driven charge separation event.&nbsp;</span></p><p><span>By anchoring this molecule to the surface of the nanocrystal the team created a highly efficient and stable pathway. As soon as exposure to light creates the electron-hole pair in the nanocrystal, the anchored molecule shuttles the hole away, physically separating it from the electron. This physical separation of the electron and the hole prevents the two from quickly snapping back together and wasting the energy. This results in a charge-separated state that lasts for microseconds, which is an eternity in the world of photochemistry, creating a much larger window of time for future researchers to work with in terms of harnessing this captured light-driven energy for useful chemical reactions. The team was able to prove the significance of the ‘sticky anchor’ carboxylate, by comparing their derivative to a phenothiazine that lacked the anchor, which was shown to be far less effective at holding the energy, demonstrating that this anchoring to the surface was key to this system’s performance.</span></p></div> </div> <div class="ucb-article-content-media ucb-article-content-media-right col-lg"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2025-10/structure%20overview.png?itok=TGhdDxmb" width="1500" height="1401" alt="chemical representation of the 'molecular dam'"> </div> </div> </div> </div> </div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p>This collaborative work was done as part of the U.S. Department of Energy funded <a href="https://science.osti.gov/bes/efrc" rel="nofollow">Energy Frontier Research Center</a> (EFRC) <a href="https://photosynthesis.uci.edu/" rel="nofollow">Ensembles of Photosynthetic Nanoreactors (EPN).</a> EPN consists of 17 senior investigates located across 9 universities and 3 U.S. national laboratories. The goal of EPN is to provide a forum for collaboration, bringing together expertise to advance the frontiers of discovery and fundamental knowledge in photochemical energy conversion. The aim is to not only foster new discoveries and applications, but in doing so, train the researchers who will build knowledge and advances that will benefit the United States innovation and economy.</p><p>This project took advantage of the different areas of expertise of each team to generate ideas and quickly execute them. Kenny Miller’s group of dedicated undergraduate researchers at Fort Lewis College synthesized the carboxylated phenothiazine derivative (and a slew of others). Miller then sent the derivative to Jenny Yang’s group of inorganic electrochemists at UC Irvine for advanced electrochemical characterization. Gordana Dukovic’s group here at synthesized the nanocrystals, tested their compatibility with the derivative, characterized the binding, and undertook the advanced laser spectroscopy study to see how the electrons and holes behaved.</p><blockquote><p>“The first time I saw the results-saw how effective our ‘molecular dam’ was at slowing charge recombination-I knew we had struck gold” explained Dr. Sophia Click, a lead author on the study. “To slow charge recombination from nanoseconds to microseconds, and with a molecule that can be paired with so many existing photocatalyst systems, makes this work vital to share with as many researchers as possible.”</p></blockquote><p>Development of this ‘molecular dam’ could have implications for the future design of catalysts for light-driven chemistry. By increasing the efficiency of the initial energy-capture step, this system improves the efficiency of the entire process. This could improve not just one specific reaction, but rather, benefit a broad range of light-driven chemical reactions. A key technology this could enhance is the development of light-driven creation of chemical commodities or high-value chemicals. This research provides a more robust and versatile chemical toolkit for exploring these possibilities.</p><p>This discovery in controlling charge-separation, and energy, at the nanoscale is an important design parameter into developing light-driven chemistry, and hopefully light-driven chemical manufacturing. Imagine a future where materials, such as plastics, and even pharmaceuticals, are not made in energy inefficient high-temperature reactors powered by fossil fuels but instead are synthesized directly and efficiently using the power of light. While this vision is still on the horizon, the work done in this collaboration provides an important piece of the scientific puzzle, constituting a huge leap toward one day achieving these goals.</p><p><span>The study, “Exceptionally Long-Lived Charge Separated States in CdS Nanocrystals with a Covalently Bound Phenothiazine Derivative” was published in the journal Chem. This work was supported by the U.S. Department of Energy, Office of Science, as part of the Energy Frontier Research Center: Ensembles of Photosynthetic Nanoreactors (EPN; DE-SC0023431), with additional experiments on nanorods supported by Air Force Office of Scientific Research under AFOSR (FA9550-22-1-0347).</span></p></div> </div> </div> </div> </div> <div>October 2025</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2025-10/2025_09_ChargeSeparationHero.jpg?itok=QhN5h3UT" width="1500" height="328" alt="Illustration of the charge separation event"> </div> </div> <div>On</div> <div>White</div> Tue, 21 Oct 2025 19:17:19 +0000 Daniel Morton 1407 at /rasei Pre-steady-state kinetics of nanocrystal:molybdenum nitrogenase biohybrids reveals hole-scavenging efficiency is critical to N2 reduction /rasei/2025/07/30/pre-steady-state-kinetics-nanocrystalmolybdenum-nitrogenase-biohybrids-reveals-hole <span>Pre-steady-state kinetics of nanocrystal:molybdenum nitrogenase biohybrids reveals hole-scavenging efficiency is critical to N2 reduction</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-07-30T13:59:40-06:00" title="Wednesday, July 30, 2025 - 13:59">Wed, 07/30/2025 - 13:59</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-08/2025_07_30_CellRepPhysSci_Thumbnail.png?h=d3502f1d&amp;itok=euJzVTyA" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/282" hreflang="en">Bio-Catalysis</a> <a href="/rasei/taxonomy/term/281" hreflang="en">Catalysis</a> <a href="/rasei/taxonomy/term/160" hreflang="en">Dukovic</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/154" hreflang="en">King</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>CELL REPORTS PHYSICAL SCIENCE, 2025, 102732</div> <script> window.location.href = `https://doi.org/10.1016/j.xcrp.2025.102732`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Wed, 30 Jul 2025 19:59:40 +0000 Daniel Morton 1381 at /rasei Understanding light-driven production of hydrogen could unlock future insights for harnessing light for chemistry /rasei/2025/06/09/understanding-light-driven-production-hydrogen-could-unlock-future-insights-harnessing <span>Understanding light-driven production of hydrogen could unlock future insights for harnessing light for chemistry</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-06-09T10:27:04-06:00" title="Monday, June 9, 2025 - 10:27">Mon, 06/09/2025 - 10:27</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-06/2025_05_Dukovic_Screen.jpg?h=8f74817f&amp;itok=nHL6908e" width="1200" height="800" alt="illustration of the hybrid catalyst reaction to produce hydrogen"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/177"> News </a> <a href="/rasei/taxonomy/term/170"> Publication Highlight </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/281" hreflang="en">Catalysis</a> <a href="/rasei/taxonomy/term/160" hreflang="en">Dukovic</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/154" hreflang="en">King</a> <a href="/rasei/taxonomy/term/385" hreflang="en">RoundupPhotocatalysis</a> </div> <a href="/rasei/our-community">Daniel Morton</a> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p class="hero">Light to fuel: clean hydrogen production. Improved understanding of the light-driven production of hydrogen holds the promise not just to make the reaction more efficient in producing a fuel, but also to offer a framework to better understand future light-driven chemistries.&nbsp;</p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default 3"> <div class="ucb-article-text" itemprop="articleBody"> <div> <div class="align-right image_style-small_500px_25_display_size_"> <div class="imageMediaStyle small_500px_25_display_size_"> <img loading="lazy" src="/rasei/sites/default/files/styles/small_500px_25_display_size_/public/2025-06/Researchers.png?itok=AMkHdHgK" width="375" height="283" alt="Profile pictures of Gordana Dukovic and Paul King"> </div> </div> <p>Many chemical reactions require the input of energy to <a rel="nofollow">activate</a> the transformation. This can often be in the form of heat, or chemical energy. One of the most efficient ways of introducing energy into a reaction is by using light. If you don’t have to heat up a reaction, or add extra chemicals to it, and instead shine a light on it, you can save significant energy. However, it can be difficult to control and optimize light-driven reactions. This research, <a href="https://doi.org/10.1016/j.chempr.2025.102594" rel="nofollow">just published in Chem</a>, is a collaboration between the <a href="/lab/dukovicgroup/" rel="nofollow">Dukovic Group</a> at the () and the <a href="https://research-hub.nrel.gov/en/persons/paul-king" rel="nofollow">King Group</a> at the National Renewable Energy Lab (NREL) and provides a holistic understanding of the light-driven production of hydrogen gas using a nanocrystal-enzyme complex as the catalyst, and a computational framework that can be used more generally to understand other light-driven chemical reactions in the future. The code for this model is being made available in the supplementary documents of this article.&nbsp;</p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default 3"> <div class="ucb-article-text" itemprop="articleBody"> <div><p><span>Chemical catalysis is a special type of reaction, one that increases the speed of a transformation and often reduces the amount of waste produced by the process. Think of it like an assembly line. The catalyst is like a station on the line, bringing together two or more components to create a new product that is then passed along. Without the catalyst the components might, by chance, bump together and form the desired product, but it will be much slower, and much less frequent. The catalyst remains unchanged in the process and can repeat the transformation many times.&nbsp;</span></p> <div class="align-right image_style-medium_750px_50_display_size_"> <div class="imageMediaStyle medium_750px_50_display_size_"> <img loading="lazy" src="/rasei/sites/default/files/styles/medium_750px_50_display_size_/public/2025-06/Overall.png?itok=swecEmsu" width="750" height="855" alt="Overview of different types of catalysis"> </div> </div> <p>Enzymes are Nature’s catalysts. On the cellular level, whenever a change needs to happen, an enzyme is usually involved. The speed of an enzyme, and its selectivity, that is its ability to only react with the desired molecules out of the soup of molecules present in a typical cell, is fantastic. Enzymes are often superior to catalysts we can make in a lab, and as such, much research has gone into finding ways to harness such enzymes to do reactions for us in the lab. Unfortunately, it is not as easy as just grabbing some enzyme out of a cell. Enzymes often require specific environments and partners to react with.</p><p><span>Redox enzymes are a special, and particularly attractive, class of enzymes. They are capable of adding, or removing, an electron from a chemical reaction, a key step in the production of hydrogen gas. Redox enzymes rarely exist by themselves. Returning to the assembly line analogy, to get a station that can add the electrons to the protons (H<sup>+</sup>) to make hydrogen gas, many other stations need to be added before in a specific order. In a cell there is a chain of enzymes that pass the electrons along before the reaction can take place.&nbsp;</span></p><p><span>This is where the artificial component comes in. The nanocrystal, which, when exposed to light, releases an electron, replaces the long chain of enzymes and can directly transfer an electron to the enzyme. So, you reduce your assembly line down from a chain of many stations to just two. “This work was really only possible through collaboration” explains Gordana Dukovic, the lead researcher at . “The team at NREL have vast expertise in hydrogenase (the redox enzyme that creates hydrogen gas), and we have the expertise in making and tailoring the nanocrystals and studying what they do after they absorb light”. Getting the enzyme to work with the artificial electron donor took some work.</span></p></div> </div> </div> </div> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><div class="feature-layout-callout feature-layout-callout-large"><div class="ucb-callout-content"><div class="ucb-box ucb-box-title-left ucb-box-alignment-none ucb-box-style-fill ucb-box-theme-lightgray"><div class="ucb-box-inner"><div class="ucb-box-title">Show me more!</div><div class="ucb-box-content"><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-large" href="https://doi.org/10.1016/j.chempr.2025.102594" rel="nofollow"><span class="ucb-link-button-contents">This Research</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-regular" href="https://doi.org/10.1021/ja2116348" rel="nofollow"><span class="ucb-link-button-contents">Characterization of Photochemical Processes</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-regular" href="https://doi.org/10.1021/ja413001p" rel="nofollow"><span class="ucb-link-button-contents">Electron Transfer Kinetics</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-regular" href="https://doi.org/10.1039/C4CP05993J" rel="nofollow"><span class="ucb-link-button-contents">Competition between electron transfer processes</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-regular" href="https://doi.org/10.1021/jacs.7b04216" rel="nofollow"><span class="ucb-link-button-contents">Activation Thermodynamics</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-regular" href="https://doi.org/10.1021/acs.jpcc.7b07229" rel="nofollow"><span class="ucb-link-button-contents">Role of Surface-Capping Ligands</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-regular" href="https://pubs.acs.org/doi/10.1021/acs.jpcc.8b09916" rel="nofollow"><span class="ucb-link-button-contents">Quantum Efficiency of Charge Transfer</span></a></p><p><a class="ucb-link-button ucb-link-button-blue ucb-link-button-full ucb-link-button-regular" href="https://www.annualreviews.org/content/journals/10.1146/annurev-physchem-050317-014232" rel="nofollow"><span class="ucb-link-button-contents">2020 Review of this research area</span></a></p></div></div></div></div></div><p>The two teams first started working together in 2011 and have invested a great deal of work in understanding many aspects of this nanocrystal-enzyme hybrid. “Working with the team at NREL has been really amazing” says Dukovic, “the opportunity to work with experts who really help you ask the important questions, and identify where our assumptions were wrong, was essential for this work.” For over more than a decade this collaboration has interrogated the different steps of this process, such as how the nanocrystal and enzyme fit together, how the nanocrystal generates an electron when exposed to light, how the nanocrystal transfers the electron to the enzyme, and how the enzyme uses those electrons to make hydrogen. It is only through building this comprehensive understanding of the steps that underpin this reaction that the team are in the position to provide a holistic picture of the whole transformation. Furthermore, the framework that they have built is robust enough to be applied in improving other light-driven reactions in the future.</p><p>This work describes an improved assembly line capable of converting light energy into hydrogen gas, a clean burning fuel that provides new, more efficient ways, to generate electricity. Perhaps more excitingly, it demonstrates the power of a new computational model and framework, built on over a decade of collaborative research, which has been made freely available, that provides insights into light-driven reactions and can be used by the scientific community to refine and optimize future light-driven chemistry. Helena Keller, the lead author is enthusiastic about the next steps “We are in a really exciting place now, where the capabilities of using computational methods to understand complex systems like this are becoming more and more accessible. The better we understand how to control processes at the smallest scales – like at the level of individual electron transfers – the closer we get to revolutionizing the way we produce energy and materials for the good of the world”.&nbsp;</p></div> </div> </div> </div> </div> <div>JUNE 2025</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/rasei/sites/default/files/styles/large_image_style/public/2025-06/2025_05_Dukovic_Wide.jpg?itok=eU2FoTF3" width="1500" height="328" alt="Illustration of hybrid nanocrystal-enzyme photocatalysis"> </div> </div> <div>On</div> <div>White</div> Mon, 09 Jun 2025 16:27:04 +0000 Daniel Morton 1300 at /rasei Rate-limiting regimes in photochemical H2 generation by complexes of colloidal CdS nanorods and hydrogenase /rasei/2025/05/23/rate-limiting-regimes-photochemical-h2-generation-complexes-colloidal-cds-nanorods-and <span>Rate-limiting regimes in photochemical H2 generation by complexes of colloidal CdS nanorods and hydrogenase</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-05-23T16:07:30-06:00" title="Friday, May 23, 2025 - 16:07">Fri, 05/23/2025 - 16:07</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-06/2025_05_23_Chem.png?h=2469e47b&amp;itok=qUUnUR3y" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/282" hreflang="en">Bio-Catalysis</a> <a href="/rasei/taxonomy/term/281" hreflang="en">Catalysis</a> <a href="/rasei/taxonomy/term/280" hreflang="en">Computational Modeling</a> <a href="/rasei/taxonomy/term/160" hreflang="en">Dukovic</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/276" hreflang="en">Fuels</a> <a href="/rasei/taxonomy/term/286" hreflang="en">Hydrogen</a> <a href="/rasei/taxonomy/term/154" hreflang="en">King</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>CHEM, 2025, 102594</div> <script> window.location.href = `https://doi.org/10.1016/j.chempr.2025.102594`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Fri, 23 May 2025 22:07:30 +0000 Daniel Morton 1325 at /rasei Models and Measurements Quantify Photon Recycling, Charge-Carrier Diffusion and Photon Scattering Contributions to Photoluminescence in InP Nanowire Arrays /rasei/2025/04/19/models-and-measurements-quantify-photon-recycling-charge-carrier-diffusion-and-photon <span>Models and Measurements Quantify Photon Recycling, Charge-Carrier Diffusion and Photon Scattering Contributions to Photoluminescence in InP Nanowire Arrays</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-04-19T12:23:25-06:00" title="Saturday, April 19, 2025 - 12:23">Sat, 04/19/2025 - 12:23</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-08/2025_04_19_JPhyChemC_Thumbnail.png?h=d3502f1d&amp;itok=5WlSgBLT" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/281" hreflang="en">Catalysis</a> <a href="/rasei/taxonomy/term/160" hreflang="en">Dukovic</a> <a href="/rasei/taxonomy/term/315" hreflang="en">EPN</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/266" hreflang="en">Energy Generation</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/273" hreflang="en">Solar Power</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>THE JOURNAL OF PHYSICAL CHEMISTRY C, 2025, 129, 17, 8270-8283</div> <script> window.location.href = `https://doi.org/10.1021/acs.jpcc.5c01618`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Sat, 19 Apr 2025 18:23:25 +0000 Daniel Morton 1358 at /rasei Single-Molecule Fluorescence Microscopy Reveals Energy Transfer Active versus Inactive Nanocrystal/Dye Conjugate Pairs /rasei/2025/04/07/single-molecule-fluorescence-microscopy-reveals-energy-transfer-active-versus-inactive <span>Single-Molecule Fluorescence Microscopy Reveals Energy Transfer Active versus Inactive Nanocrystal/Dye Conjugate Pairs</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-04-07T15:56:48-06:00" title="Monday, April 7, 2025 - 15:56">Mon, 04/07/2025 - 15:56</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-04/2025_04_07_ChemBiomedIm.png?h=d3502f1d&amp;itok=F9aY7Ooj" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/281" hreflang="en">Catalysis</a> <a href="/rasei/taxonomy/term/160" hreflang="en">Dukovic</a> <a href="/rasei/taxonomy/term/315" hreflang="en">EPN</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>CHEMICAL AND BIOMEDICAL IMAGING, 2025, ASAP</div> <script> window.location.href = `https://doi.org/10.1021/cbmi.5c00009`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Mon, 07 Apr 2025 21:56:48 +0000 Daniel Morton 1281 at /rasei Emissive Traps Lead to Asymmetric Photoluminescence Line Shape in Spheroidal CsPbBr3 Quantum Dots /rasei/2025/03/25/emissive-traps-lead-asymmetric-photoluminescence-line-shape-spheroidal-cspbbr3-quantum <span>Emissive Traps Lead to Asymmetric Photoluminescence Line Shape in Spheroidal CsPbBr3 Quantum Dots</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-03-25T13:36:09-06:00" title="Tuesday, March 25, 2025 - 13:36">Tue, 03/25/2025 - 13:36</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-04/2025_03_25_NanoLetters.png?h=d3502f1d&amp;itok=nN4lv1Rs" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/160" hreflang="en">Dukovic</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/304" hreflang="en">IMOD</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/290" hreflang="en">Semiconductors</a> <a href="/rasei/taxonomy/term/111" hreflang="en">Toney</a> <a href="/rasei/taxonomy/term/114" hreflang="en">Yazdi</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>NANO LETTERS, 2025, 25, 13, 5063-5070</div> <script> window.location.href = `https://doi.org/10.1021/acs.nanolett.4c04995`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 25 Mar 2025 19:36:09 +0000 Daniel Morton 1269 at /rasei Revealing the Influence of Binding Motifs on Electron Transfer and Recombination Kinetics for CdSe Quantum Dots Functionalized with a Modified Viologen /rasei/2025/03/06/revealing-influence-binding-motifs-electron-transfer-and-recombination-kinetics-cdse <span>Revealing the Influence of Binding Motifs on Electron Transfer and Recombination Kinetics for CdSe Quantum Dots Functionalized with a Modified Viologen</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-03-06T13:27:26-07:00" title="Thursday, March 6, 2025 - 13:27">Thu, 03/06/2025 - 13:27</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-04/2025_03_06_JPhysChemC.png?h=d3502f1d&amp;itok=KnU-FsDE" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/160" hreflang="en">Dukovic</a> <a href="/rasei/taxonomy/term/315" hreflang="en">EPN</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/290" hreflang="en">Semiconductors</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>THE JOURNAL OF PHYSICAL CHEMISTRY C, 2025, 129, 11, 5556-5570</div> <script> window.location.href = `https://doi.org/10.1021/acs.jpcc.5c00740`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Thu, 06 Mar 2025 20:27:26 +0000 Daniel Morton 1265 at /rasei Revealing the Phonon Bottleneck Limit in Negatively Charged CdS Quantum Dots /rasei/2025/02/13/revealing-phonon-bottleneck-limit-negatively-charged-cds-quantum-dots <span>Revealing the Phonon Bottleneck Limit in Negatively Charged CdS Quantum Dots</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-02-13T15:43:06-07:00" title="Thursday, February 13, 2025 - 15:43">Thu, 02/13/2025 - 15:43</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-03/2025_02_13_ACSNano.png?h=d3502f1d&amp;itok=V0EyeSnH" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/160" hreflang="en">Dukovic</a> <a href="/rasei/taxonomy/term/269" hreflang="en">Energy Applications</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/290" hreflang="en">Semiconductors</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>ACS NANO, 2025, 19, 7, 7055-7063</div> <script> window.location.href = `https://doi.org/10.1021/acsnano.4c15181`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Thu, 13 Feb 2025 22:43:06 +0000 Daniel Morton 1245 at /rasei Synthesis and Characterization of [Ni(H2O)(7-PPh2NArSO3)2](NaBF4) for Light-Driven Quantum Dot-Catalyst Hydrogen Evolution /rasei/2025/01/14/synthesis-and-characterization-nih2o7-pph2narso32nabf4-light-driven-quantum-dot-catalyst <span>Synthesis and Characterization of [Ni(H2O)(7-PPh2NArSO3)2](NaBF4) for Light-Driven Quantum Dot-Catalyst Hydrogen Evolution</span> <span><span>Daniel Morton</span></span> <span><time datetime="2025-01-14T10:51:30-07:00" title="Tuesday, January 14, 2025 - 10:51">Tue, 01/14/2025 - 10:51</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/rasei/sites/default/files/styles/focal_image_wide/public/2025-02/2025_01_15_EnergyFuels.png?h=603532df&amp;itok=8Z25UX7E" width="1200" height="800" alt="TOC Graphic"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/rasei/taxonomy/term/43"> Publication </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/rasei/taxonomy/term/160" hreflang="en">Dukovic</a> <a href="/rasei/taxonomy/term/266" hreflang="en">Energy Generation</a> <a href="/rasei/taxonomy/term/267" hreflang="en">Energy Storage</a> <a href="/rasei/taxonomy/term/274" hreflang="en">Nanoscience and Advanced Materials</a> <a href="/rasei/taxonomy/term/290" hreflang="en">Semiconductors</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>ENERGY FUELS, 2025, 39, 4, 2196-2202</div> <script> window.location.href = `https://doi.org/10.1021/acs.energyfuels.4c05559`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 14 Jan 2025 17:51:30 +0000 Daniel Morton 1232 at /rasei