News /program/cuprep/ en Six CU PREP researchers named Distinguished Associates /program/cuprep/2025/04/25/six-cu-prep-researchers-named-distinguished-associates <span>Six CU PREP researchers named Distinguished Associates</span> <span><span>Kirsten Apodaca</span></span> <span><time datetime="2025-04-25T16:35:40-06:00" title="Friday, April 25, 2025 - 16:35">Fri, 04/25/2025 - 16:35</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/program/cuprep/sites/default/files/styles/focal_image_wide/public/2025-04/chautaqua.jpeg?h=a0911a10&amp;itok=Mzv8aCxV" width="1200" height="800" alt="poppies at Chautauqua park"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/program/cuprep/taxonomy/term/2"> News </a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><div><p><span lang="EN-US">Six researchers from the 黑料社区网 Professional Research Experience Program (PREP) have been recognized as Distinguished Associates in 2024 by the National Institute of Standards and Technology (NIST).</span><span>&nbsp;</span></p></div><div><p><span lang="EN-US">The honor is conferred by the Physical Measurement Laboratory (PML) to associates for their outstanding scientific achievements and contributions to the lab鈥檚 mission.</span><span>&nbsp;</span></p></div><div><p><span lang="EN-US">鈥淭hese distinguished associate awards to six 黑料社区网 research faculty members demonstrate the importance of PREP to advancing NIST鈥檚 mission to promote U.S. innovation and industrial competitiveness,鈥 said Paul Beale, professor of physics and PREP Program Manager.&nbsp;</span></p></div><div><p><span lang="EN-US"><strong>Calibrating gravitational wave observatories</strong></span><span>&nbsp;</span></p></div><div><p><span lang="EN-US">Anna Vaskuri received the award for contributions to the </span><a href="https://www.nist.gov/nist-awards/2024-judson-c-french-award-matthew-spidell" rel="nofollow"><span lang="EN-US">Judson C. French Award</span></a><span lang="EN-US">. The award citation reads 鈥渇or reducing the uncertainty in calibration of the world network of gravitational wave observatories.鈥 Vaskuri is a senior research fellow in the Long Wavelength Sensors and Applications Group.</span><span>&nbsp;</span></p></div><div><p><span lang="EN-US"><strong>Advancing ion-traps for quantum computing</strong></span><span><strong>&nbsp;</strong></span></p></div><div><p><span lang="EN-US">Benedikt Hampel was recognized for contributions to the </span><a href="https://www.nist.gov/nist-awards/2024-bronze-medal-award-daniel-slichter-varun-verma-dietrich-leibfried-richard-mirin" rel="nofollow"><span lang="EN-US">Bronze Medal</span></a><span lang="EN-US"> awarded to NIST scientists Daniel Slichter, Varun Verma, Dietrich Leibfried, and Richard Mirin. The award citation reads 鈥渇or the realization of the first single-photon detector integrated with an ion trap for the high-fidelity state readout of a trapped-ion quantum bit.鈥 Hampel is a postdoctoral fellow in the Faint Photonics Group.</span><span>&nbsp;</span></p></div><div><p><span lang="EN-US"><strong>Sensors to unlock mysteries of the early universe</strong></span><span><strong>&nbsp;</strong></span></p></div><div><p><span lang="EN-US">PREP researchers Gregory Jaehnig, Dante Jones, Matthew Koc, and Robinjeet Singh, along with NIST Research Engineer Richard Lew, were recognized as Distinguished Associates for their work contributing to the </span><a href="https://www.nist.gov/nist-awards/2024-gold-medal-award-johannes-hubmayr-james-beall-shannon-duff-leila-vale-michael-link" rel="nofollow"><span lang="EN-US">Gold Medal</span></a><span lang="EN-US">. The award citation reads 鈥渇or developing the novel sensors that enable the most advanced cosmic microwave background observatory to unravel the mysteries of the early universe.鈥&nbsp;</span><span>&nbsp;</span></p></div><div><ul><li><span lang="EN-US">Gregory Jaehnig, postdoctoral fellow in the Long Wavelength Sensors and Applications Group</span><span>&nbsp;</span></li></ul></div><div><ul><li><span lang="EN-US">Dante Jones, post-baccalaureate in the Long Wavelength Sensors and Applications Group</span><span>&nbsp;</span></li></ul></div><div><ul><li><span lang="EN-US">Matthew Koc, senior research fellow in the Device Fabrication Group</span><span>&nbsp;</span></li></ul></div><div><ul><li><span lang="EN-US">Robinjeet Singh, senior research fellow in the Device Fabrication Group</span></li></ul><p><span lang="EN-US">鈥淭hese awards recognize these researchers' outstanding contributions to quantum measurement science and engineering and ensure that 黑料社区网 and NIST-Boulder continue their world-leadership in these fields,鈥 said Beale.</span><span>&nbsp;</span></p></div></div> </div> </div> </div> </div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/program/cuprep/sites/default/files/styles/large_image_style/public/2025-04/chautaqua.jpeg?itok=_u0Tm_ff" width="1500" height="1125" alt="poppies at Chautauqua park"> </div> </div> <div>On</div> <div>White</div> Fri, 25 Apr 2025 22:35:40 +0000 Kirsten Apodaca 279 at /program/cuprep CU PREP Alumni Highlight: Dan Cole (PhDPhys鈥18) /program/cuprep/2025/04/24/cu-prep-alumni-highlight-dan-cole-phdphys18 <span>CU PREP Alumni Highlight: Dan Cole (PhDPhys鈥18) </span> <span><span>Kirsten Apodaca</span></span> <span><time datetime="2025-04-24T12:36:03-06:00" title="Thursday, April 24, 2025 - 12:36">Thu, 04/24/2025 - 12:36</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/program/cuprep/sites/default/files/styles/focal_image_wide/public/2025-04/DanColePhoto.jpg?h=d487f5a9&amp;itok=vFQaBSUv" width="1200" height="800" alt="Dan Cole"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/program/cuprep/taxonomy/term/2"> News </a> </div> <span>Kirsten Apodaca</span> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default 3"> <div class="ucb-article-text" itemprop="articleBody"> <div><div> <div class="align-right image_style-medium_750px_50_display_size_"> <div class="imageMediaStyle medium_750px_50_display_size_"> <img loading="lazy" src="/program/cuprep/sites/default/files/styles/medium_750px_50_display_size_/public/2025-04/DanColePhoto.jpg?itok=2wdMX-Kc" width="750" height="1000" alt="Dan Cole"> </div> <span class="media-image-caption"> <p>Dan Cole (PhDPhys'18)</p> </span> </div> <p><span lang="EN-US">Dan Cole (PhDPhys鈥18) got his start in CU鈥檚 Professional Research Experience Program (CU PREP) by joining the Time and Frequency Division at the National Institute of Standards and Technology (NIST) working with Scott Diddams and Scott Papp.</span><span>&nbsp;</span></p><p><span lang="EN-US">Cole remembers meeting Diddams during a recruiting visit to CU. 鈥淚 thought his research was interesting and working at NIST looked like a great opportunity,鈥 he recalls.</span></p><p><span lang="EN-US">During his PhD studies, Cole鈥檚 research at NIST focused on the nonlinear dynamics underlying frequency comb generation in optical microresonators. The research involved a mix of experimental work and numerical simulation of nonlinear dynamics.</span><span>&nbsp;</span></p><p><span lang="EN-US">鈥淭he optical frequency comb was the subject of the 2005 Nobel Prize in Physics. It revolutionized precision measurement by creating a kind of 鈥渙ptical ruler鈥 that can very accurately measure the frequency of light,鈥 said Cole.&nbsp;</span><span>&nbsp;</span></p><p><span lang="EN-US">鈥淢y research explored ways to miniaturize this technology so that it could be used outside the lab and eventually incorporated into integrated photonics devices. In addition to my work studying frequency comb generation in optical microresonators, I worked with my colleagues to develop and patent a method of frequency comb generation based on modulating a single-frequency laser. And I had a great collaboration with Professor Luigi Lugiato to extend his "Lugiato-Lefever equation" describing frequency comb generation in ring resonators to linear resonators.鈥</span><span>&nbsp;</span></p><p><span lang="EN-US">Cole recalls one of his proudest accomplishments as a graduate student was when he and his colleagues figured out why their microresonator frequency combs were producing a variety of highly structured optical spectra.</span><span>&nbsp;</span></p><p><span lang="EN-US">鈥淢y colleagues and I eventually explained these spectra as arising from an interesting twist on behavior that we already understood. We expected to find a single pulse of light circulating in the resonator, and instead we saw ordered patterns of many pulses, with slightly different arrangements producing many different spectra. This was a very satisfying solution to the puzzle!鈥</span><span>&nbsp;</span></p><p><span lang="EN-US">Now Cole is a quantum physicist at Infleqtion, an atomic physics technology company. He leads a team of scientists and engineers to develop and operate their neutral atom quantum computer in Boulder. 鈥淥ne thing I like about the industry environment is that it鈥檚 highly collaborative,鈥 he said.</span><span>&nbsp;</span></p><p><span lang="EN-US">When asked what advice he would give to future students, Cole said changing research fields helped him stay excited about the work and gave him a broad perspective. Through graduate school, postdoctoral studies and his shift into industry, Cole changed his research focus multiple times.</span><span>&nbsp;</span></p><p><span lang="EN-US">He started with classical nonlinear optics in microresonator frequency combs. After graduate school, he took a post-doc鈥痙oing trapped ion quantum information experiments at NIST's Ion Storage group. After NIST, he remained in the quantum information field but pivoted from trapped ions to neutral atoms in his transition to Infleqtion.</span><span>&nbsp;</span></p><p><span lang="EN-US">鈥淥ne advantage of these kinds of transitions is that they are fun, and a second is that I think having experience across multiple fields really helps to spur creative problem solving,鈥 he said.</span><span>&nbsp;</span></p></div></div> </div> </div> </div> </div> <div>Now a quantum physicist at Infleqtion, Dan Cole reflects on his experience conducting research at the National Institute of Standards and Technology (NIST) as part of CU鈥檚 Professional Research Experience Program (CU PREP).</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Thu, 24 Apr 2025 18:36:03 +0000 Kirsten Apodaca 278 at /program/cuprep CU PREP Alumni Highlight: Jenny Jiahui Wu /program/cuprep/2025/02/20/cu-prep-alumni-highlight-jenny-jiahui-wu <span>CU PREP Alumni Highlight: Jenny Jiahui Wu</span> <span><span>Kirsten Apodaca</span></span> <span><time datetime="2025-02-20T13:13:21-07:00" title="Thursday, February 20, 2025 - 13:13">Thu, 02/20/2025 - 13:13</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/program/cuprep/sites/default/files/styles/focal_image_wide/public/2025-02/Jenny%20Wu.jpg?h=eb32273f&amp;itok=B7sBSuMW" width="1200" height="800" alt="Jenny Wu"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/program/cuprep/taxonomy/term/2"> News </a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> </div> </div> </div> </div> <div>For recent graduate Jenny Jiahui Wu, her time at 黑料社区网 has been one of cutting-edge research and discovery. Learn about her path to grad school in Boulder, her research at NIST through CU PREP, and what's in store for her next.</div> <script> window.location.href = `/physics/2025/02/20/meet-cu-boulder-physics-fall-2024-graduate-jenny-jiahui-wu`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Thu, 20 Feb 2025 20:13:21 +0000 Kirsten Apodaca 268 at /program/cuprep Congratulations to our Fall 2024 CU PREP Graduates /program/cuprep/2024/12/06/congratulations-our-fall-2024-cu-prep-graduates <span>Congratulations to our Fall 2024 CU PREP Graduates</span> <span><span>Jane Hill</span></span> <span><time datetime="2024-12-06T11:57:55-07:00" title="Friday, December 6, 2024 - 11:57">Fri, 12/06/2024 - 11:57</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/program/cuprep/sites/default/files/styles/focal_image_wide/public/2024-12/Generic%20Graduation.jpg?h=08b866d1&amp;itok=5gxy09tP" width="1200" height="800" alt="Scenes from the 2017 Integrated Physiology commencement on the 黑料社区网 campus. (Photo by Glenn Asakawa/University of Colorado)"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/program/cuprep/taxonomy/term/2"> News </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/program/cuprep/taxonomy/term/3" hreflang="en">Program News</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-text" itemprop="articleBody"> <div><p>Congratulations to our Fall 2024 CU PREP Graduates!</p><ul><li><div>Angelina Harke-Hosemann 鈥 Ph.D. in Astrophysical &amp; Planetary Science</div></li><li><div>Am茅ya Ramadurgakar 鈥 Ph.D. in Electrical Engineering</div></li><li><div>Jenny Wu 鈥 Ph.D. Physics</div></li></ul></div> </div> </div> </div> </div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Fri, 06 Dec 2024 18:57:55 +0000 Jane Hill 261 at /program/cuprep Read about the Latest Research From CU PREP /program/cuprep/2024/11/07/read-about-latest-research-cu-prep <span>Read about the Latest Research From CU PREP</span> <span><span>Veronica R Lingo</span></span> <span><time datetime="2024-11-07T11:01:50-07:00" title="Thursday, November 7, 2024 - 11:01">Thu, 11/07/2024 - 11:01</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/program/cuprep/sites/default/files/styles/focal_image_wide/public/2024-11/NIST.jpg?h=9a3874b6&amp;itok=G3pNsqp0" width="1200" height="800" alt="NIST Building 1"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/program/cuprep/taxonomy/term/2"> News </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/program/cuprep/taxonomy/term/11" hreflang="en">Research News</a> </div> <span>Kenna Hughes-Castleberry</span> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p>The 黑料社区网 Post-baccalaureate Research Education Program (<a href="/program/cuprep" rel="nofollow">PREP</a>) is a joint program between NIST (the National Institute of Standards and Technology) and 黑料社区网. It offers undergraduate and graduate students the opportunity to delve into cutting-edge research in various fields. Through collaborating with NIST, participants gain hands-on experience in projects shaping the future of science and technology.</p><p>Below are some of the latest research publications featuring PREP students, showcasing their contributions to fields ranging from quantum computing to telecommunications. This is by no means an exhaustive list, as PREP participants continue to publish new findings.</p><p><strong>A Deep Dive into Self-Assembled Quantum Dots with Zixuan Wang and Poolad Imany</strong></p><p>Participants Zixuan Wang and Poolad Imany, along with NIST researchers, explored <a href="https://www.nist.gov/publications/gated-inas-quantum-dots-embedded-surface-acoustic-wave-cavities-low-noise-optomechanics" rel="nofollow">tiny particles</a> called quantum dots, which have the potential to revolutionize quantum technologies. Their study, published in <a href="https://opg.optica.org/oe/fulltext.cfm?uri=oe-32-22-38384&amp;id=561311" rel="nofollow"><em>Optics Express</em></a>, focuses on embedding these dots in special soundwave structures to reduce noise鈥攗nwanted disruptions that can affect performance. This research is important because it helps make quantum devices, like super-fast computers, more stable and reliable. While Poolad Imany has recently left the PREP program, his contributions alongside Zixuan鈥檚 set the stage for future advancements in this field.</p><p>Find the full study here at the NIST website: <a href="https://www.nist.gov/publications/gated-inas-quantum-dots-embedded-surface-acoustic-wave-cavities-low-noise-optomechanics" rel="nofollow">https://www.nist.gov/publications/gated-inas-quantum-dots-embedded-surface-acoustic-wave-cavities-low-noise-optomechanics</a></p><p><strong>A New Material with Super Strength for Electronics</strong></p><p>Working with NIST scientists, PREP associate Thomas Kolibaba鈥檚 research, published recently in&nbsp;<a href="https://pubs.acs.org/doi/10.1021/acsmacrolett.4c00456" rel="nofollow"><em>ACS Nano Letters</em></a>, is about creating stronger and safer materials for electronics. He worked on a new kind of material called a <a href="https://www.nist.gov/publications/remarkable-dielectric-breakdown-strength-printable-polyelectrolyte-photopolymer" rel="nofollow">polyelectrolyte photopolymer</a>, which can handle extreme electric forces without breaking down. This makes it a great candidate for use in batteries and electrical circuits. Kolibaba鈥檚 work could lead to new materials that are more efficient and longer-lasting in electronic applications.</p><p>Find the full study here at the NIST website: <a href="https://www.nist.gov/publications/remarkable-dielectric-breakdown-strength-printable-polyelectrolyte-photopolymer" rel="nofollow">https://www.nist.gov/publications/remarkable-dielectric-breakdown-strength-printable-polyelectrolyte-photopolymer</a></p><p><strong>Making Sense of Data: Improving Signal Processing</strong></p><p>Xifeng Lu and NIST experts are helping to improve the way we analyze complex data using <a href="https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=956831" rel="nofollow">digital signal processing</a>. This research, published in <a href="https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=956831" rel="nofollow"><em>IEEE Transactions on Instrumentation and Measurements</em></a>, is essential for things like communications, where it鈥檚 important to understand and interpret signals鈥攕uch as sound waves or radio frequencies鈥攊n real time. Xifeng鈥檚 work could have major impacts on a range of fields, from improving wireless networks to enhancing the precision of scientific instruments.</p><p>Find the full study here at the NIST website: <a href="https://www.nist.gov/publications/digital-signal-processing-time-series-spectrum-estimation" rel="nofollow">https://www.nist.gov/publications/digital-signal-processing-time-series-spectrum-estimation</a></p><p><strong>Tiny Optical Devices That Could Transform Telecom</strong></p><p>In collaboration with NIST scientists, PREP participant Jizhao Zang鈥檚 research focuses on a new type of optical device called a <a href="https://www.nist.gov/publications/foundry-manufacturing-octave-spanning-microcombs" rel="nofollow">microcomb</a>, which has the potential to improve technologies like telecommunications and sensors. These microcombs are difficult to produce, but Zang鈥檚 study, published in <a href="https://opg.optica.org/ol/abstract.cfm?uri=ol-49-18-5143" rel="nofollow"><em>Optics Letters</em>, demonstrates how using advanced manufacturing techniques can make them more accessible and efficient. This research could lead to smaller, more powerful devices in areas like high-speed internet and precision measurement.</a></p><p><a href="https://opg.optica.org/ol/abstract.cfm?uri=ol-49-18-5143" rel="nofollow">Find the full study here at the NIST website: </a><a href="https://www.nist.gov/publications/foundry-manufacturing-octave-spanning-microcombs" rel="nofollow">https://www.nist.gov/publications/foundry-manufacturing-octave-spanning-microcombs</a></p><p><strong>Cooling Down Quantum Computers with Light</strong></p><p>Working with NIST experts, PREP associate Jenny Wu is developing <a href="https://www.nist.gov/publications/electromagnetically-induced-transparency-cooling-tripod-structure-hyperfine-trapped-ion" rel="nofollow"><span>a method</span></a> for keeping quantum computers cool called Electromagnetically Induced Transparency (EIT). Quantum computers need to be kept at extremely low temperatures to function properly, and Wu鈥檚 research involves using light to help with that cooling process. By studying trapped ions (charged particles) and how they behave in different conditions, her work, published in <em>Physical Review A,</em> contributes to making quantum computers more reliable and practical for real-world applications.</p><p>Find the full study here at the NIST website:<a href="https://www.nist.gov/publications/electromagnetically-induced-transparency-cooling-tripod-structure-hyperfine-trapped-ion" rel="nofollow">https://www.nist.gov/publications/electromagnetically-induced-transparency-cooling-tripod-structure-hyperfine-trapped-ion</a></p><p><strong>Improving 5G and LTE Networks and Testing Wireless Device Coexistence</strong></p><p>PREP participant Nadia Yoza Mitsuishi, along with NIST researchers, is working on how to make 5G and LTE networks鈥攖wo types of wireless communication systems鈥<a href="https://www.nist.gov/publications/5g-nr-and-lte-downlink-coexistence-measurements-using-software-defined-radios" rel="nofollow">work better together</a>. As our world becomes more connected, these networks need to coexist without interfering with each other. Recently published in <a href="https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=957217" rel="nofollow"><em>IEEE International Conference on Communications</em></a>, Mitsuishi鈥檚 research uses software-defined radios to measure how these networks interact, helping engineers design better systems for future wireless communications. Her work could lead to faster and more reliable internet for everyone.</p><p>Find the full study here at the NIST website: <a href="https://www.nist.gov/publications/5g-nr-and-lte-downlink-coexistence-measurements-using-software-defined-radios" rel="nofollow">https://www.nist.gov/publications/5g-nr-and-lte-downlink-coexistence-measurements-using-software-defined-radios</a></p><p>Mitsuishi also worked on a <a href="https://www.nist.gov/publications/coexistence-testing-comparing-conducted-and-radiated-test-results" rel="nofollow">separate study</a> with NIST researchers looking at testing how wireless devices can coexist without interfering鈥攁 critical issue as our world becomes more connected. In this study, Mitsuishi and the team compared two methods of testing: conducted (where wires physically connect devices) and radiated (where signals are sent through the air). The team showed how these testing methods can reveal different strengths and weaknesses in wireless systems by simulating real-world scenarios, such as a wireless emergency stop system coexisting with Wi-Fi networks.</p><p>Find the full study here at the NIST website: <a href="https://www.nist.gov/publications/coexistence-testing-comparing-conducted-and-radiated-test-results" rel="nofollow">https://www.nist.gov/publications/coexistence-testing-comparing-conducted-and-radiated-test-results</a></p><p><strong>Better Electronics with 3D-Integrated Materials</strong></p><p>PREP participant Tomasz Karpisz鈥檚 research with NIST scientists explores <a href="https://www.nist.gov/publications/characterizing-broadband-rf-permittivity-3d-integrated-layers-glass-wafer-stack-100-mhz" rel="nofollow">new materials</a> that can improve how electronic devices work, especially at very high frequencies. By studying the electrical properties of 3D-integrated layers in glass, Karpisz is helping to create better designs for devices like smartphones, computers, and even quantum computers. His work, recently published in the <a href="https://ieeexplore.ieee.org/document/10600278" rel="nofollow">conference proceedings</a> for the 2024 IEEE/MTT-S International Microwave Symposium, focuses on making sure these materials perform well in advanced technologies, leading to more efficient and powerful electronics.</p><p>Find the full study here at the NIST website: <a href="https://www.nist.gov/publications/characterizing-broadband-rf-permittivity-3d-integrated-layers-glass-wafer-stack-100-mhz" rel="nofollow">https://www.nist.gov/publications/characterizing-broadband-rf-permittivity-3d-integrated-layers-glass-wafer-stack-100-mhz</a></p><p><strong>Controlling Tiny Quantum Bits for Better Computers</strong></p><p>In collaboration with NIST scientists, PREP associate Justin Niedermeyer is working on improving the way we control quantum bits (qubits)鈥攖he basic units of quantum computers. By developing <a href="https://www.nist.gov/publications/individual-addressing-and-state-readout-trapped-ions-utilizing-rf-micromotion" rel="nofollow">a method</a> to individually address and read the state of each qubit, Niedermeyer鈥檚 research, recently published in <a href="https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.133.033201" rel="nofollow"><em>Physical Review Letters</em></a>, helps make quantum computers more accurate and easier to scale up. This kind of precise control is key to building larger, more powerful quantum computers that could revolutionize industries like medicine, finance, and cybersecurity.</p><p>Find the full study here at the NIST website: <a href="https://www.nist.gov/publications/individual-addressing-and-state-readout-trapped-ions-utilizing-rf-micromotion" rel="nofollow">https://www.nist.gov/publications/individual-addressing-and-state-readout-trapped-ions-utilizing-rf-micromotion</a></p><p><strong>Tiny Switches for the Future of Quantum Computing</strong></p><p>PREP associate Elizabeth Sorenson鈥檚 work, collaborating with NIST experts, focuses on improving MEMS (Micro-Electro-Mechanical Systems) switches, which are used in a variety of applications, including quantum computing. These tiny switches need to be reliable, especially when used in extreme conditions like very low temperatures. Sorenson鈥檚 research, published recently as a <a href="https://iopscience.iop.org/article/10.1088/1757-899X/1302/1/012027" rel="nofollow">conference proceeding</a> for the IOP Conference Series: Materials Science and Engineering, Advances in Cryogenic Engineering helps ensure that these components can handle the demands of future quantum computing systems, making her work a critical step toward creating more dependable technology.</p><p>Find the full study here at the NIST website: <a href="https://www.nist.gov/publications/characterizing-mems-switch-reliability-cryogenic-applications-such-quantum-computing" rel="nofollow">https://www.nist.gov/publications/characterizing-mems-switch-reliability-cryogenic-applications-such-quantum-computing</a></p></div> </div> </div> </div> </div> <div>Here are some of the latest research publications featuring the work of PREP students!</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/program/cuprep/sites/default/files/styles/large_image_style/public/2024-11/NIST.jpg?itok=JvsXMgzk" width="1500" height="1125" alt="NIST Building 1"> </div> <span class="media-image-caption"> <p>NIST Building 1 at the NIST Boulder Campus</p> </span> </div> <div>On</div> <div>White</div> Thu, 07 Nov 2024 18:01:50 +0000 Veronica R Lingo 257 at /program/cuprep Congratulations to our Summer 2024 CU PREP Graduate /program/cuprep/2024/08/13/congratulations-our-summer-2024-cu-prep-graduate <span>Congratulations to our Summer 2024 CU PREP Graduate</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2024-08-13T13:57:51-06:00" title="Tuesday, August 13, 2024 - 13:57">Tue, 08/13/2024 - 13:57</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/program/cuprep/sites/default/files/styles/focal_image_wide/public/2024-12/Summer%20graduation.jpg?h=5cd9fccc&amp;itok=GS0VcBjq" width="1200" height="800" alt="Commencement (Photo by Glenn Asakawa/University of Colorado)"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/program/cuprep/taxonomy/term/2"> News </a> </div> <div role="contentinfo" class="container ucb-article-tags" itemprop="keywords"> <span class="visually-hidden">Tags:</span> <div class="ucb-article-tag-icon" aria-hidden="true"> <i class="fa-solid fa-tags"></i> </div> <a href="/program/cuprep/taxonomy/term/3" hreflang="en">Program News</a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p>Congratulations to our Summer 2024 CU PREP Graduate!</p><ul><li>Hannah Knaack&nbsp;- Ph.D. in Physics</li></ul></div> </div> </div> </div> </div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Tue, 13 Aug 2024 19:57:51 +0000 Anonymous 221 at /program/cuprep A Band-Aid for the heart? New 3D printing method makes this, and much more, possible /program/cuprep/2024/08/07/band-aid-heart-new-3d-printing-method-makes-and-much-more-possible <span>A Band-Aid for the heart? New 3D printing method makes this, and much more, possible</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2024-08-07T13:41:10-06:00" title="Wednesday, August 7, 2024 - 13:41">Wed, 08/07/2024 - 13:41</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/program/cuprep/sites/default/files/styles/focal_image_wide/public/article-thumbnail/biotech_3d-printer-cc62.jpg?h=7e45cfb8&amp;itok=zlsASkbT" width="1200" height="800" alt="3D Printed material stretched across a porcine heart"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/program/cuprep/taxonomy/term/2"> News </a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p>A 黑料社区网-led research team鈥攊ncluding CU PREP Postdoctoral Associate&nbsp;Thomas Kolibaba and former PREP Research Associate Jason Killgore鈥攈as created a new biomaterial that is both strong and flexible, and can be 3D printed for custom biomedical applications.</p></div> </div> </div> </div> </div> <script> window.location.href = `/today/2024/08/01/band-aid-heart-new-3d-printing-method-makes-and-much-more-possible`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Wed, 07 Aug 2024 19:41:10 +0000 Anonymous 243 at /program/cuprep CU PREP alum John Mates featured in NIST's Taking Measure Blog /program/cuprep/2024/05/30/cu-prep-alum-john-mates-featured-nists-taking-measure-blog <span>CU PREP alum John Mates featured in NIST's Taking Measure Blog</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2024-05-30T13:34:00-06:00" title="Thursday, May 30, 2024 - 13:34">Thu, 05/30/2024 - 13:34</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/program/cuprep/sites/default/files/styles/focal_image_wide/public/article-thumbnail/ben_mates_cmb_group_photo_041124.jpg?h=f5a95a1a&amp;itok=0-mfhUrf" width="1200" height="800" alt="NIST researcher John 鈥淏en鈥 Mates with colleagues from NIST and the Japan Proton Accelerator Research Complex in Tokai, Japan. Image credit: Ben Mates"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/program/cuprep/taxonomy/term/2"> News </a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> </div> </div> </div> </div> <div>黑料社区网 and PREP alum John "Ben" Mates' (PhDPhys'11) dissertation is now a hot topic and "required reading for many scientists interested in multiplexing." Mates completed his PhD while conducting research at the National Institute of Standards and Technology (NIST) through CU's Professional Research Experience Program (CU PREP).</div> <script> window.location.href = `https://www.nist.gov/blogs/taking-measure/nist-physicists-once-obscure-work-now-helping-researchers-learn-about-origins`; </script> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Thu, 30 May 2024 19:34:00 +0000 Anonymous 225 at /program/cuprep CU PREP office to undergo major renovations /program/cuprep/2024/05/22/cu-prep-office-undergo-major-renovations <span>CU PREP office to undergo major renovations</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2024-05-22T14:24:11-06:00" title="Wednesday, May 22, 2024 - 14:24">Wed, 05/22/2024 - 14:24</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/program/cuprep/sites/default/files/styles/focal_image_wide/public/article-thumbnail/IMG_8456.jpg?h=cef69de3&amp;itok=99xmTVb0" width="1200" height="800" alt="Duane Physics building"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/program/cuprep/taxonomy/term/2"> News </a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><p>The CU PREP Office (DUAN D1B37) is undergoing a major renovation&nbsp;starting May 27, 2024. The renovations will overhaul the space, providing a modernized look and feel to these areas that welcome new students, staff, researchers, faculty, and visitors.&nbsp;</p><p>Construction is expected to last through December 2024. Staff from the affected offices are being temporarily relocated to other spaces&nbsp;in the Duane Physics building for the duration of the project.&nbsp;</p><p>Here's where you can find us starting May 22, 2024:</p><p><strong>DUAN F315&nbsp;</strong></p><ul><li><a href="/program/cuprep/tiffany-mason" data-entity-type="node" data-entity-uuid="43298cca-7ba8-41ed-9f90-9e0a075340ad" data-entity-substitution="canonical" rel="nofollow" title="Tiffany Mason">Tiffany Mason</a>&nbsp;鈥 CU PREP Program Coordinator</li><li><a href="/program/cuprep/lisa-valencia" data-entity-type="node" data-entity-uuid="b21e706e-af78-409f-8940-c3cc4381cf45" data-entity-substitution="canonical" rel="nofollow" title="Lisa Valencia">Lisa Valencia</a>&nbsp;鈥 CU PREP HR/Payroll Liaison</li></ul><p><strong>DUAN F533&nbsp;</strong></p><ul><li><a href="/program/cuprep/jane-hill" data-entity-type="node" data-entity-uuid="f5937ac5-0f6c-4147-b8f3-1146bf938849" data-entity-substitution="canonical" rel="nofollow" title="Jane Hill">Jane Hill</a>&nbsp;鈥 CU PREP Program &amp; Travel Services Professional</li><li><a href="/program/cuprep/george-peterman" data-entity-type="node" data-entity-uuid="0bbb5f2b-207a-463e-bf76-0a60fe7a4aae" data-entity-substitution="canonical" rel="nofollow" title="George Peterman">George Peterman</a>&nbsp;鈥 Immigration &amp; Operations Services Senior Professional</li></ul></div> </div> </div> </div> </div> <div>The CU PREP Office (DUAN D1B37) is undergoing major renovations starting May 27, 2024. Here's where you can find staff from the affected offices.</div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Wed, 22 May 2024 20:24:11 +0000 Anonymous 224 at /program/cuprep CU PREP researchers receive notable recognition /program/cuprep/2024/05/16/cu-prep-researchers-receive-notable-recognition <span>CU PREP researchers receive notable recognition</span> <span><span>Anonymous (not verified)</span></span> <span><time datetime="2024-05-16T16:15:03-06:00" title="Thursday, May 16, 2024 - 16:15">Thu, 05/16/2024 - 16:15</time> </span> <div> <div class="imageMediaStyle focal_image_wide"> <img loading="lazy" src="/program/cuprep/sites/default/files/styles/focal_image_wide/public/article-thumbnail/P1420413.jpg?h=e3817806&amp;itok=scUZCgPf" width="1200" height="800" alt="NIST Boulder Campus"> </div> </div> <div role="contentinfo" class="container ucb-article-categories" itemprop="about"> <span class="visually-hidden">Categories:</span> <div class="ucb-article-category-icon" aria-hidden="true"> <i class="fa-solid fa-folder-open"></i> </div> <a href="/program/cuprep/taxonomy/term/2"> News </a> </div> <div class="ucb-article-content ucb-striped-content"> <div class="container"> <div class="paragraph paragraph--type--article-content paragraph--view-mode--default"> <div class="ucb-article-content-media ucb-article-content-media-above"> <div> <div class="paragraph paragraph--type--media paragraph--view-mode--default"> <div> <div class="imageMediaStyle large_image_style"> <img loading="lazy" src="/program/cuprep/sites/default/files/styles/large_image_style/public/article-image/P1420413.jpg?itok=5Mj1NFYs" width="1500" height="844" alt="NIST Boulder Campus"> </div> </div> </div> </div> </div> <div class="ucb-article-text d-flex align-items-center" itemprop="articleBody"> <div><div class="image-caption image-caption-right"> <p></p> <p>NIST Boulder Campus (Image credit: R. Jacobson/NIST)</p> </div> <p>Three 黑料社区网 Professional Research Experience Program (PREP) researchers were recently recognized along with their research groups at NIST for their outstanding scientific achievements.</p> <p>鈥淐ongratulations to PREP researchers Bakhrom Oripov, Benedikt Hampel, and Saeed Khan for these impressive awards,鈥 said CU PREP Program Manager and Professor Paul Beale. 鈥淲e鈥檙e thrilled to have such remarkable scientists contributing to their fields.鈥&nbsp;</p> <h2>2023 Applied Physics Letters Rising Stars Collection&nbsp;</h2> <p>Each year, Applied Physics Letters (APL) selects outstanding publications by emerging investigators for inclusion in the <a href="http://pubs.aip.org/apl/collection/222097/2023-Rising-Stars-Collection" rel="nofollow">APL Rising Stars Collection</a>. This year, two CU PREP participants were recognized in the collection.&nbsp;&nbsp;</p> <ul> <li> <p><strong>Bakhrom Oripov,</strong> postdoctoral fellow in the Quantum Nanophotonics Group, was recognized in the 2023 APL Rising Stars Collection for the paper 鈥<a href="https://www.nist.gov/publications/thermally-coupled-imager-scalable-readout-architecture-superconducting-nanowire-single" target="_blank" rel="nofollow">The thermally-coupled imager: A scalable readout architecture for superconducting nanowire single photon</a>.鈥 Oripov earned his PhD in condensed matter physics from the University of Maryland, College Park in 2020 and has been conducting research at NIST through PREP since 2021.&nbsp;&nbsp;&nbsp;</p> </li> <li> <p><strong>Benedikt Hampel,</strong> postdoctoral fellow in the Faint Photonics Group, was recognized in the 2023 APL Rising Stars Collection for the paper 鈥<a href="https://www.nist.gov/publications/trap-integrated-superconducting-nanowire-single-photon-detectors-improved-rf-tolerance" target="_blank" rel="nofollow">Trap-Integrated Superconducting Nanowire Single-Photon Detectors with Improved RF Tolerance for Trapped-Ion Qubit State Readout</a>.鈥 After earning his PhD in electrical engineering from TU Braunschweig, Germany in 2018, Hampel joined PREP as a postdoctoral associate in 2021.&nbsp;</p> </li> </ul> <h2>2023 NIST Precision Measurement Lab (PML) Distinguished Associate Award&nbsp;</h2> <p>This award recognizes associates for outstanding contributions to the Precision Measurement Laboratory.&nbsp;</p> <ul> <li><strong>Saeed Khan,</strong> senior research fellow in the Quantum Nanophotonics Group, received a 2023 NIST PML Distinguished Associate Award in recognition of his group receiving the 2023 Bronze Medal Award. The award citation read 鈥渇or the monolithic integration of superconducting single-photon detectors with Josephson junctions for advanced computing and single-photon metrology.鈥 Khan earned his PhD from the University of Central Florida and joined PREP in 2018.&nbsp;</li> </ul></div> </div> </div> </div> </div> <h2> <div class="paragraph paragraph--type--ucb-related-articles-block paragraph--view-mode--default"> <div>Off</div> </div> </h2> <div>Traditional</div> <div>0</div> <div>On</div> <div>White</div> Thu, 16 May 2024 22:15:03 +0000 Anonymous 223 at /program/cuprep